Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118081, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570148

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liujunzi formula has been used to treat liver cancer in China for many years, but its underlying mechanism remains unclear. We previously found that decreased expression of miR-122-3p was associated with liver cancer. In this study, we aimed to explore the target of miR-122-3p and the effect of the Liujunzi formula on miR-122-3p and its downstream events in liver cancer. MATERIAL AND METHODS: Bioinformatics pinpointed potential targets of miR-122-3p. The actual target was confirmed by miRNA mimic/inhibitor transfections and a dual-luciferase reporter assay. RNA-seq looked at downstream genes impacted by this target. Flow cytometry checked for changes in T cell apoptosis levels after exposing them to liver cancer cells. Gene expression was measured by RT-qPCR, western blotting, and immunofluorescence staining. RESULTS: Cell experiments found the Liujunzi extract (LJZ) upregulated miR-122-3p and in a dose-dependent manner. Bioinformatics analysis found UBE2I was a potential target of miR-122-3p, which was validated through experiments using miRNA mimics/inhibitors and a dual-luciferase reporter assay. RNA-seq data implicated the NF-κB pathway as being downstream of the miR-122-3p/UBE2I axis, further confirmed by forcing overexpression of UBE2I. Bioinformatic evidence suggested a link between UBE2I and T cell infiltration in liver cancer. Given that the NF-κB pathway drives PD-L1 expression, which can inhibit T cell infiltration, we investigated whether PD-L1 is a downstream effector of miR-122-3p/UBE2I. This was corroborated through mining public databases, UBE2I overexpression studies, and tumor-T cell co-culture assays. In addition, we also confirmed that LJZ downregulates UBE2I and NF-κB/PD-L1 pathways through miR-122-3p. LJZ also suppressed SUMOylation in liver cancer cells and protected PD-1+ T cells from apoptosis induced by co-culture with tumor cells. Strikingly, a miR-122-3p inhibitor abrogated LJZ's effects on UBE2I and PD-L1, and UBE2I overexpression rescued the LJZ-mediated effects on NF-κB and PD-L1. CONCLUSIONS: miR-122-3p targets UBE2I, thereby suppressing the NF-κB signaling cascade and downregulating PD-L1 expression, which potentiates anti-tumor immune responses. LJZ bolsters anti-tumor immunity by modulating the miR-122-3p/UBE2I/NF-κB/PD-L1 axis in liver cancer cells.

2.
Zhongguo Zhen Jiu ; 44(3): 318-322, 2024 Mar 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38467507

RESUMO

The paper summarizes the clinical experience of professor ZHANG Ren in the staging treatment with characteristic acupuncture techniques for oculomotor paralysis. According to the symptoms of oculomotor paralysis, the staging treatment is given, in which acupuncture is dominant and the needling techniques are optioned in compliance with the symptoms. In the early, middle and late stages of illness, three different acupuncture therapies are delivered accordingly, i.e. the combination of the point-toward-point needling at the four acupoints located on the forehead and the electroacupuncture with disperse-dense wave, the surrounding needling and the triple needling at the acupoints around the eyeball, as well as the perpendicular needle insertion at the three acupoints within the orbit. Professor ZHANG Ren lays the stress on identifying the etiology and differentiating the symptoms, as well as the early intervention for the disease. For the intractable cases, the comprehensive regimen such as acupoint injection, dermal needling and auricular point sticking is supplemented. During treatment, the spirit harmonization is greatly considered to ensure the effectiveness. On the basis of the staging acupuncture therapy, the acupuncture technique for harmonizing the spirit and regulating qi is combined to obtain the favorable clinical effect on oculomotor paralysis.


Assuntos
Terapia por Acupuntura , Acupuntura , Eletroacupuntura , Oftalmoplegia , Humanos , Terapia por Acupuntura/métodos , Pontos de Acupuntura
3.
Int J Surg ; 110(1): 478-489, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755380

RESUMO

OBJECTIVES: Chronic low back pain (CLBP) can seriously impair the quality of life of patients and has a remarkable comorbidity with psychological symptoms, which, in turn, can further exacerbate the symptoms of CLBP. Psychological treatments are critical and nonnegligent for the management of CLBP, and thus, should attract sufficient attention. However, current evidence does not suggest the superiority and effectiveness of nonpharmacological interventions in reducing psychological symptoms among patients with CLBP.Thus, this study was designed to compare the effectiveness of nonpharmacological interventions for depression, anxiety, and mental health among patients with CLBP and to recommend preferred strategies for attenuating psychological symptoms in clinical practice. METHODS: In this systematic review and network meta-analysis (NMA), PubMed, Embase Database, Web of Science, and Cochrane Library were searched from database inception until March 2022. Randomized clinical trials (RCTs) that compare different nonpharmacological interventions for depression, anxiety, and mental health among patients with CLBP were eligible. The Preferred Reporting Items for Systematic Reviews and Meta-analyses statement was used. Four reviewers in pairs and divided into two groups independently performed literature selection, data extraction, and risk of bias, and certainty of evidence assessments. This NMA was conducted with a random effects model under a frequentist framework. The major outcomes were depression, anxiety, and mental health presented as the standardized mean difference (SMD) with the corresponding 95% CI. RESULTS: A total of 66 RCTs that randomized 4806 patients with CLBP met the inclusion criteria. The quality of evidence was typically low or some risks of bias (47 out of 66 trials, 71.3%), and the precision of summary estimates for effectiveness varied substantially. In addition, 7 categories of interventions with 26 specific treatments were evaluated. For depression, mind body therapy (pooled SMD = -1.20, 95% CI: -1.63 to -0.78), biopsychosocial approach (pooled SMD = -0.41, 95% CI: -0.70 to -0.12), and physical therapy (pooled SMD = -0.26, 95% CI: -0.50 to -0.02) exhibited remarkable effectiveness in reducing depression compared with the control group. For managing anxiety, mind body therapy (pooled SMD = -1.35, 95% CI: -1.90 to -0.80), multicomponent intervention (pooled SMD = -0.47, 95% CI: -0.88 to -0.06), and a biopsychosocial approach (pooled SMD = -0.46, 95% CI: -0.79 to -0.14) were substantially superior to the control group. For improving mental health, multicomponent intervention (pooled SMD = 0.77, 95% CI: 0.14 to 1.39), exercise (pooled SMD = 0.60, 95% CI: 0.08 to 1.11), and physical therapy (pooled SMD = 0.47, 95% CI: 0.02-0.92) demonstrated statistically substantial effectiveness compared with the control group. The rank probability indicated that mind body therapy achieved the highest effectiveness in reducing depression and anxiety among patients with CLBP. Besides, the combined results should be interpreted cautiously based on the results of analyses evaluating the inconsistency and certainty of the evidence. CONCLUSION: This systemic review and NMA suggested that nonpharmacological interventions show promise for reducing psychological symptoms among patients with CLBP. In particular, mind body therapy and a biopsychosocial approach show considerable promise, and mind body therapy can be considered a priority choice in reducing depression and anxiety. These findings can aid clinicians in assessing the potential risks and benefits of available treatments for CLBP comorbidity with psychological symptoms and provide evidence for selecting interventions in clinical practice. More RCTs involving different interventions with rigorous methodology and an adequate sample size should be conducted in future research.


Assuntos
Dor Lombar , Humanos , Dor Lombar/terapia , Ansiedade/etiologia , Ansiedade/terapia , Comorbidade , Qualidade de Vida
4.
Zhen Ci Yan Jiu ; 48(10): 969-976, 2023 Oct 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37879946

RESUMO

OBJECTIVES: To observe the therapeutic effect of electroacupuncture (EA) on neurogenic urinary retention rats, so as to explore the underlying mechanism of EA in treating neurogenic urinary retention by focusing on 3-phosphoinositide-dependent protein kinase 1 (PDK1)/protein kinase B (Akt)/hyperpolarization activated cyclic nucleotide-gated cation channel 4 (HCN4) pathway. METHODS: Female SD rats were randomly divided into sham operation, model, EA, PDK1 inhibitor, HCN4 blocker and EA + HCN4 blocker groups, with 20 rats in each group. The model of sacral spinal cord injury was established by modified Hassan Shaker spinal cord transection method. EA (2 Hz/15 Hz, 0.5 mA) was applied to "Zhongji" (CV3) and "Zhongliao" (BL33) for 20 min, once daily for 10 days. Rats of the PDK1 inhibitor group received intraperitoneal injection of OSU-03012 (20 mg/kg), and rats of the HCN4 blocker group received intraperitoneal injection of ivabradine (10 mg/kg), both once every other day for 10 days. The urodynamic indexes of rats were detected by multi-channel physiological recorder;muscle strip test was used to detect detrusor excitability;the morphological changes of bladder were observed by HE staining. Immunofluorescence double staining was used to detect the co-expression of HCN4 and C-Kit, a specific marker of interstitial cells of Cajal in bladder. Western blot was used to detect the expression of PDK1/Akt/HCN4 pathway proteins in bladder tissue and heat shock protein 27 (HSP27), a protein related to bladder contraction function. RESULTS: Compared with the sham operation group, the rats in the model group showed urinary dysfunction, decreased leak point pressure, isolated detrusor spontaneous contraction frequency, fluorescence intensity of C-Kit positive cells, HCN4+/C-Kit+ co-expression, HCN4 and p-HSP27/HSP27 protein expression in bladder tissue (P<0.05), and increased maximum bladder capacity and comp-liance, minimum tension during contraction of isolated detrusor, PDK1 and p-Akt/Akt protein expression in bladder tissue (P<0.05). Meanwhile, the above index were all reversed after EA and PDK1 inhibitor intervention (P<0.05). In comparison with the EA group, the rats had severe urinary dysfunction, the urine leakage point pressure, spontaneous contraction frequency, fluorescence intensity of C-Kit positive cells, the co-expression of HCN4+/C-Kit+, and the protein expression of HCN4 and p-HSP27/HSP27 were decreased (P<0.05), the maximum bladder capacity and compliance, the minimum tension during contraction of isolated detrusor, and the protein expression of PDK1 and p-Akt/Akt in bladder tissue were increased (P<0.05) in both HCN4 blocker and EA+HCN4 blocker groups. HE staining showed exfoliated bladder epithelium and disordered layers, vacuolization of bladder wall cells, with infiltration of neutrophils in mucosal and muscular layers in the model group, which were relatively milder in the EA and PDK1 inhibitor groups, but worse in the HCN4 blocker and EA + HCN4 blocker groups. CONCLUSIONS: EA can improve the urinary dysfunction in rats with neurogenic urinary retention, which may be related to its effect in inhibiting the activation of PDK1/Akt pathway, promo-ting HCN4-mediated detrusor excitatory contraction and urinary electrical signal activation.


Assuntos
Eletroacupuntura , Traumatismos da Medula Espinal , Retenção Urinária , Animais , Feminino , Ratos , Proteínas de Choque Térmico HSP27/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais de Potássio , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia
5.
Phytomedicine ; 109: 154618, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610137

RESUMO

BACKGROUND: Tumor cells reprogram their metabolic network to maintain their uncontrolled proliferation, metastasis, and resistance to cancer therapy. Treatments targeting abnormal cellular metabolism may have promising therapeutic effects. Formosanin C (FC), a diosgenin derived from the rhizoma of Paris polyphylla var. yunnanensis, has shown potent anti-cancer activities against various cancer types. However, the effect of FC on cancer metabolism remains to be elucidated. PURPOSE: In this research, we aimed to elucidate FC's effect and potential mechanisms on metabolism in lung cancer. METHODS: Colony formation, transwell cell migration, and apoptosis were detected in multiple NSCLC cell lines to assess the cytotoxicity of FC. 1H NMR metabolomics approach was applied to screen the differential metabolites in H1299 cells and the culture medium. Western blotting, flow cytometry, and other molecular biological techniques were performed to verify the latent mechanism involved in metabolites. An allograft tumor model was employed to investigate the anti-tumor effects of FC in vivo. RESULTS: FC significantly inhibited monoclonal formation and migration and induced cell cycle arrest and apoptosis in NSCLC cells. FC altered the abundances of 12 metabolites in lung cancer cells and 3 metabolites in the medium. These differential metabolites are primarily involved in glycolysis, citric acid cycle, and glutathione pathways. Notably, there was a remarkable increase in intracellular lactate and a reduction in extracellular lactate after FC treatment. Mechanically, FC downregulated the expression of MCT4 and CD147, blocking the export of lactate. Furthermore, FC also evoked mitochondrial dysfunction coupled with excessive oxidative stress, decreased mitochondrial membrane potential, ATP production reduction, glutathione depletion, and Ca2+ overload. Moreover, FC suppressed tumor progression in vivo with reduced protein levels of the MCT4 and CD147 in tumor tissues. CONCLUSION: FC inhibits lung cancer growth by the novel mechanism in which MCT4/CD147-mediated inhibition of lactate transport and disruption of mitochondrial functions are involved.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diosgenina , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Diosgenina/farmacologia , Ácido Láctico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos/metabolismo
7.
Pharmacol Res ; 185: 106487, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202184

RESUMO

Alterations in histone modification have been linked to cancer development and progression. Celastrol, a Chinese herbal compound, shows potent anti-tumor effects through multiple signaling pathways. However, the involvement of histone modifications in this process has not yet been illustrated. In this study, barcode sequencing of a eukaryotic genome-wide deletion library revealed that histone modifications, especially histone acetylation associated with the NuA4 histone acetyltransferase complex, were involved in the anti-proliferation actions of celastrol. The essential roles of histone modification were verified by celastrol sensitivity tests in cells lacking specific genes, such as genes encoding the subunits of the NuA4 and Swr1 complex. The combination of celastrol and histone deacetylase inhibitors (HDACi), rather than the combination of celastrol and histone acetyltransferase inhibitors, synergistically suppressed cancer cell proliferation. In addition to upregulating H4K16 acetylation (H4K16ac), celastrol regulates H3K4 tri-methylation and H3S10 phosphorylation. Celastrol treatment significantly enhanced the suppressive effects of HDACi on lung cancer cell allografts in mice, with significant H4K16ac upregulation, indicating that a combination of celastrol and HDACi is a potential novel therapeutic approach for patients with lung cancer.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Pulmonares , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Acetilação , Histonas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/uso terapêutico
8.
Mol Metab ; 64: 101562, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944895

RESUMO

OBJECTIVE: The mitochondrial nicotinamide adenine dinucleotide (NAD) kinase (MNADK) mediates de novo mitochondrial NADP biosynthesis by catalyzing the phosphorylation of NAD to yield NADP. In this study, we investigated the function and mechanistic basis by which MNADK regulates metabolic homeostasis. METHODS: Generalized gene set analysis by aggregating human patient genomic databases, metabolic studies with genetically engineered animal models, mitochondrial bioenergetic analysis, as well as gain- and loss- of-function studies were performed to address the functions and mechanistic basis by which MNADK regulates energy metabolism and redox state associated with metabolic disease. RESULTS: Human MNADK common gene variants or decreased expression of the gene are significantly associated with the occurrence of type-2 diabetes, non-alcoholic fatty liver disease (NAFLD), or hepatocellular carcinoma (HCC). Ablation of the MNADK gene in mice led to decreased fat oxidation, coincident with increased respiratory exchange ratio (RER) and decreased energy expenditure upon energy demand triggered by endurance exercise or fasting. On an atherogenic high-fat diet (HFD), MNADK-null mice exhibited hepatic insulin resistance and glucose intolerance, indicating a type-2 diabetes-like phenotype in the absence of MNADK. MNADK deficiency led to a decrease in mitochondrial NADP(H) but an increase in cellular reactive oxygen species (ROS) in mouse livers. Consistently, protein levels of the major metabolic regulators or enzymes were decreased, while their acetylation modifications were increased in the livers of MNADK-null mice. Feeding mice with a HFD caused S-nitrosylation (SNO) modification, a posttranslational modification that represses protein activities, on MNADK protein in the liver. Reconstitution of an SNO-resistant MNADK variant, MNADK-S193, into MNADK-null mice mitigated hepatic steatosis induced by HFD. CONCLUSION: MNADK, the only known mammalian mitochondrial NAD kinase, plays important roles in preserving energy homeostasis to mitigate the risk of metabolic disorders.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Proteínas Mitocondriais , Hepatopatia Gordurosa não Alcoólica , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , NAD/metabolismo , NADP/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
9.
Biomed Chromatogr ; 36(10): e5438, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778366

RESUMO

Ilex pubescens is a famous Chinese herbal medicine, frequently used to treat cardiovascular disease in South China. In this study, we aim to explore the absorption properties of ilexgenin A (C1) and ilexsaponin B1 (C3) in vascular endothelial cells after administration of the total triterpenoid saponins from Ilex pubescens (IPTS) and clarify the possible transport mechanisms. A UPLC-qTOF-MS/MS system was used to identify the components in IPTS that could be intracellularly transported by human umbilical vein endothelial cells (HUVECs). Afterwards, a rapid, highly selective and sensitive method was established to simultaneously quantify the concentration of C1 and C3 in HUVECs after administration of IPTS. The results demonstrate that pretreatment with IPTS could promote the survival of HUVECs and reduce the damage caused by TNF-α to HUVECs. Among the main 11 components in IPTS, eight components could be absorbed by HUVECs, including seven triterpenoids and one phenolic acid. The uptake of C1 and C3 by HUVECs occurred in a time-, temperature- and concentration-dependent manner, indicating the participation of passive diffusion and active transportation mechanisms. The two triterpenoid saponins all exhibited rapid absorption and a bimodal phenomenon in their concentration-time profiles, and equilibrium could be achieved after 6 h. Furthermore, C1 and C3 intracellular transportation was regulated by serum proteins, sodium-dependent glucose transporter 1 and P-glycoprotein. The current research for the first time demonstrates the in vitro pharmacokinetics characteristics of C1 and C3 in HUVECs lines, which could supply a new way of understanding the treatment of cardiovascular diseases.


Assuntos
Ilex , Saponinas , Triterpenos , Células Endoteliais da Veia Umbilical Humana , Humanos , Saponinas/farmacologia , Espectrometria de Massas em Tandem , Triterpenos/farmacologia
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(4): 488-496, 2022 Apr 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545344

RESUMO

OBJECTIVES: Electroacupuncture can enhance autophagic flow, promote neuronal regeneration, axonal and myelin remodeling to achieve the protection of spinal cord injury, but its role in neurogenic urine retention is not completely clear. This study aims to investigate whether the mechanism of electroacupuncture in the treatment of neurogenic urine retention is through autophagy mediated by adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. METHODS: A rat model of neurogenic urine retention after sacral spinal cord injury was established. The rats with successful model were randomly divided into a model group, an electroacupuncture group (electro-acupuncture for Ciliao, Zhongji, and Sanyinjiao by electronic stimulation, once a day, 20 min each time for 7 days), and an electroacupuncture+AMP-activated protein kinase (AMPK) inhibitor group (on the basis of the treatment of electroacupuncture group, 100 µg of AMPK inhibitor compound C was injected intramuscularly around the L2-3 intervertebral space on the 1st and 4th day). The normal group did not receive any treatment. The maximum bladder volume, bladder basal pressure, leak point pressure, and bladder compliance were recorded by multi-channel physiological recorder; the morphology of bladder tissue was observed by HE staining; autophagy was observed under transmission electron microscope; the expressions of LC3II and Beclin1 protein were observed by immunofluorescence staining; the protein levels of AMPK, phosphorylated-AMPK (p-AMPK), mTOR, phosphorylated-mTOR (p-mTOR), microtubule associated protein 1 light chain 3 (LC3) II and Beclin1 in bladder tissue were detected by Western blotting. RESULTS: Compared with the normal group, the maximum bladder capacity, leak point pressure, bladder compliance, p-AMPK, LC3II, Beclin1 protein expressions in the bladder tissue of the model group increased, and the p-mTOR protein expressions were decreased (all P<0.05); compared with the model group, the maximum bladder capacity, bladder compliance, p-mTOR protein expression in the bladder tissue of the electroacupuncture group were decreased, and the p-AMPK, LC3II, and Beclin1 protein expressions were increased (all P<0.05); compared with the electroacupuncture group, the maximum bladder capacity, bladder compliance, p-mTOR protein expression in the bladder tissue of the electroacupuncture+AMPK inhibitor group were increased, the p-AMPK, LC3II, and Beclin1 protein expressions were decreased (all P<0.05). In the model group, the bladder became larger, with unclear and varying degrees of degeneration, severe tissue damage and autophagosome appeared; the bladder of the electroacupuncture group was smaller than that of the model group, and all levels were clearly visible with autophagy bodies; the layers were slightly disordered and damaged in the electroacupuncture + AMPK inhibitor group. CONCLUSIONS: Electroacupuncture can activate autophagy through AMPK/mTOR pathway, thereby reducing neurogenic urine retention caused by spinal cord injury.


Assuntos
Eletroacupuntura , Traumatismos da Medula Espinal , Proteínas Quinases Ativadas por AMP , Animais , Autofagia , Proteína Beclina-1 , Mamíferos , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR
11.
J Ethnopharmacol ; 293: 115280, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405252

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xie Bai San is a Chinese medicine prescription that has been used to treat lung cancer in China for a long time. It has been proven to alleviate the symptoms and extend the survival time of lung cancer patients. Xie Bai San comprises Cortex Lycii, Cortex Mori, and Radix Glycyrrhizae Preparata. The effects and mechanisms of Cortex Mori and Glycyrrhizae on lung cancer have been reported, whereas the underlying mechanism of Cortex Lycii remains unknown. MATERIAL AND METHODS: Network pharmacology was used to explore the unknown mechanisms underlying the effect of Cortex Lycii on lung cancer. Molecular docking was used to predict the binding of a compound to the protein. The fingerprint of Cortex Lycii was obtained by HPLC. Cell counting Kit-8 assay was used to determine the appropriate concentration of Cortex Lycii extract for human lung adenocarcinoma cells, A549 and H1299. Wound healing assay and Matrigel invasion assay were used to detect the influence of Cortex Lycii extract on the migration and invasion ability of A549 and H1299. The protein expression level was detected by western blot and immunohistochemical staining. RESULTS: Using network pharmacology, 38 components of Cortex Lycii and 79 possible lung cancer-related target genes of Cortex Lycii were obtained. The targets were assigned to 35 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the PI3K-AKT signaling pathway contained the most targets and had the second-lowest P-value. The molecular docking showed the components of Cortex Lycii bound to HSP90AB1. Among them, 6 components bound to HSP90AB1 in which HSP90AB1 binds to and phosphorylates AKT. The functional experiments showed that Cortex Lycii suppressed the migration and invasion of human lung cancer cells in a dose-dependent manner. Cortex Lycii up-regulated E-Cadherin and down-regulated N-Cadherin, Vimentin, and MMP2. Furthermore, Cortex Lycii made no change in the total AKT and mTOR protein levels, but caused the down-regulation of p-AKT and p-mTOR in human lung cancer cells, which was reversed by Terazosin, an agonist of HSP90. Moreover, acacetin and apigenin, two components of Cortex Lycii, reduced the protein level of p-AKT and p-mTOR, and the reduction was also inhibited by Terazosin. CONCLUSION: Cortex Lycii suppressed epithelial-mesenchymal transition (EMT) in lung cancer cells through the PI3K-AKT-mTOR signaling pathway, possibly by targeting HSP90AB1 and inhibiting HSP90AB1-AKT binding.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Phytomedicine ; 95: 153871, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34902811

RESUMO

BACKGROUND: Developing alternative targets and drugs for rheumatoid arthritis (RA) treatment is currently an urgent issue. The relationship between TGM2 and the abnormal immune microenvironment in synovium tissues, as well as the specific role of TGM2 in RA are yet to be elucidated. Sarsasapogenin (Sar) is a sapogenin extracted from the Chinese medical herb Anemarrhena asphodeloides Bunge. and served as a representative anti-inflammatory drug capable of ameliorating inflammatory responses in several human diseases. However, the therapeutic effect of Sar on RA remains unknown. PURPOSE: This investigation aims to elucidate the role of TGM2 in RA and investigate whether Sar is a candidate drug to target TGM2 of fibroblast-like synoviocytes (FLS). METHODS: Bioinformatics analyses were applied for elucidating the role of N(6)-methyladenine (m6A) RNA methylation in RA and identifying the specific target regulated by m6A methylation in RA-FLS. Methylated RNA immunoprecipitation, CCK8 assay, Edu assay, flow cytometry, RT-qPCR and Western blot were utilized to investigate the function of Sar and TGM2 in RA-FLS. RESULTS: Bioinformatics analyses emphasized the importance of m6A RNA methylation in RA and identified an m6A methylation-mediated gene TGM2. Interestingly, both m6A RNA methylation and TGM2 expression in RA synovium tissues correlated with activated immuno-inflammatory phenotype and associated with clinical characteristics and therapy response of RA patients. TGM2 served as a promoter of RA-FLS proliferation by inducing DNA replication and cell cycle transition and inhibiting apoptosis through activating NF-κB signaling. Intriguingly, Sar could impair m6A methylation of TGM2 mRNA and downregulate TGM2 expression. Downregulated TGM2 contributed to the suppressive role of Sar in DNA replication and the stimulatory role of Sar in cell cycle arrest and apoptosis of RA-FLS. Mechanically, Sar inhibited the expression of key regulators in DNA replication, cell cycle, and apoptosis by impairing NF-κB signaling, thus abolishing FLS proliferation to ameliorate RA progression. CONCLUSIONS: This cross-validated work based on three independent datasets is detailedly delineated using cell lines and clinical samples, recognizing that TGM2 can be an attractive target and Sar might be a novel anti-RA drug.


Assuntos
Artrite Reumatoide , Sinoviócitos , Adenosina/análogos & derivados , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Proliferação de Células , Células Cultivadas , Fibroblastos , Humanos , RNA Mensageiro , Espirostanos , Membrana Sinovial
13.
Front Neuroanat ; 16: 1057929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686575

RESUMO

Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms. Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-ß, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR. Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression. Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation.

14.
Zhonghua Nan Ke Xue ; 27(6): 483-488, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34914286

RESUMO

OBJECTIVE: To explore the possible pathogenesis of chronic nonbacterial prostatitis (CNP) in rats from the perspective of mitochondria, and the interventional effect of Jiedu Huoxue Decoction (JHD) on CNP. METHODS: Forty clean-grade SD male rats were randomly divided into 4 groups of an equal number, sham control, CNP model control, Qianliekang Tablets intervention (QLK) and JHD intervention, those in the former two groups treated intragastrically with normal saline, and those in the latter two with QLK and JHD, respectively, at 2g/kg qd for 30 successive days. Then serum and prostate tissue samples were collected from the rats for calculation of the organ coefficients, HE staining, extraction of mitochondria in the prostate tissue, measurement of the levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and Na+-K+-ATPase by colorimetric assay, and observation of the ultrastructural changes of the prostatic epithelial cells under the transmission electron microscope (TEM). RESULTS: The organ coefficient of the prostate was significantly higher in the CNP model controls (ï¼»1.95 ± 0.39ï¼½%) than in the sham control (ï¼»1.50 ± 0.42ï¼½%, P < 0.05), QLK (ï¼»1.54 ± 0.32ï¼½%, P < 0.05) and JHD groups (ï¼»1.47 ± 0.53ï¼½%, P < 0.05). TEM showed significant hyperplasia of the interstitial fibrous tissue, glandular structural disorder and inflammatory cell immersion in the CNP model controls, decreased inflammatory cells and reduced hyperplasia of epithelial cells in the acinar and interstitial fibrous tissues in the QLK and JHD groups, but no significant changes in the sham controls. The CNP model controls, compared with the QLK and JHD groups, exhibited remarkably lower levels of SOD (ï¼»17.42 ± 2.91ï¼½ vs ï¼»23.47 ± 5.79ï¼½ and ï¼»22.52 ± 3.88ï¼½ U/mg prot, P < 0.05), GSH-PX (ï¼»38.35 ± 6.98ï¼½ vs ï¼»47.68 ± 10.37ï¼½ and ï¼»89.95 ± 7.65ï¼½ U/mg prot, P < 0.05 or P < 0.01), and Na+-K+-ATPase in the prostatic mitochondria (ï¼»0.98 ± 0.40ï¼½ vs ï¼»1.37 ± 0.29ï¼½ and ï¼»1.85 ± 0.32ï¼½ µmol Pi/mg prot/h, P < 0.05 or P < 0.01), but a higher level of MDA (ï¼»1.70 ± 0.22ï¼½ vs ï¼»0.54 ± 0.14ï¼½ and ï¼»0.59 ± 0.17ï¼½ nmol/mg prot, P < 0.01). Significant mitochondrial damage was observed in the prostate tissue of the CNP model controls, and markedly enhanced mitochondrial autophagy was seen in the JHD group. CONCLUSIONS: Chronic nonbacterial prostatitis induces mitochondrial dysfunction in the prostate of rats, and Jiedu Huoxue Decoction can promote the recovery of mitochondrial function, which may be related to mitochondrial autophagy.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Prostatite , Animais , Autofagia , Masculino , Mitocôndrias/patologia , Próstata/ultraestrutura , Prostatite/tratamento farmacológico , Ratos
15.
Hortic Res ; 8(1): 188, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354050

RESUMO

Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.

16.
Phytomedicine ; 91: 153678, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385092

RESUMO

BACKGROUND: Demethyleneberberine (DMB) is a natural active component of medicinal plant Cortex phellodendri chinensis with favorable bioactivity. However, the role of DMB in suppressing non-small cell lung cancer (NSCLC) remains unknown. PURPOSE: In this study, we aimed to examine the effect and underlying mechanism of DMB in suppressing NSCLC. METHODS: CCK8 assay and colony formation assay were utilized to assess the efficiency of DMB on the viability and colony formation capacity of NSCLC cells. Flow cytometry and ß-Galactosidase Staining Kit were utilized to determine the efficiency of DMB on the cell cycle and cellular senescence of NSCLC cells. RT-qPCR and Western blot were used to detect the effect of DMB on cell cycle and cellular senescence related gene and protein expression of NSCLC cells. In vivo tumor model was established to evaluate the anti NSCLC effect of DMB. In addition, RNA-seq analysis was performed to detect the differential gene expression after DMB treatments. RESULTS: In this study, we revealed that DMB exhibits efficient inhibitory effect on NSCLC cell proliferation and tumor xenografts growth in vivo. We also demonstrated that DMB could inhibit cell migration by suppressing epithelial-mesenchymal transition (EMT) and trigger cell cycle arrest by down-regulating the expression of cell cycle related genes in NSCLC cells. In addition, DMB treatment efficiently induces cellular senescence of NSCLC cells. From the RNA-seq analysis, we found that DMB accelerates senescence through suppressing HIF-1α expression, which was further elucidated by overexpressing HIF-1α in NSCLC to reduce the inhibitory effect of DMB. Furthermore, we also revealed that DMB decreases the expression of c-Myc, an up-stream protein of HIF-1α. CONCLUSIONS: Taken together, we first report that DMB inhibits NSCLC progress through inducing cell cycle arrest and triggering cellular senescence by downregulating c-Myc/HIF-1α pathway.


Assuntos
Berberina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Berberina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Ethnopharmacol ; 280: 114397, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245831

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Spleen-invigorating pills (SIP) are composed of Codonopsis, fried Atractylodes, tangerine peel, Fructus aurantii immaturus (fried), fried hawthorn, and colored malt. SIP strengthens the spleen and increases appetite and is often used as a chemotherapy adjuvant. AIM OF THE STUDY: We aimed to explore the protective effects and mechanism of action for SIP on mouse bone marrow stromal cells (OP9) injured by 5-fluorouracil (5-FU). MATERIALS AND METHODS: The effects of SIP on OP9 cells injured by 5-FU were evaluated, and high-performance liquid chromatography (HPLC) was used as a quality control method. The experiments were divided into a control group, a model group, an epidermal growth factor (EGF) treatment group, and an SIP treatment group. The cell survival rate, apoptotic cell morphology, cell apoptosis rate, and the contents of caspase 3 were evaluated to determine the protective effects of SIP in OP9 cells injured by 5-FU. Network pharmacology was used to predict the mechanism through which SIP mediates anti-chemotherapy damage. The nitric oxide (NO) and nitric oxide synthase (iNOS) levels and the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) and p62 protein were detected to explore the mechanism through which SIP mediates anti-chemotherapy damage through the regulation of oxidative stress. RESULTS: Cell counting kit-8 (CCK8) detection showed that 5-FU reduced OP9 cell survival, and SIP blocked the inhibition of OP9 cell growth induced by 5-FU. When OP9 cells were treated with both SIP (10 g L-1) and 5-FU (2.5 × 10-2 g L-1) for 24 h, compared with the model group, the early apoptosis rates significantly decreased, and the activity of caspase 3 was significantly reduced. The results of network pharmacology and Western blot showed that compared with the model group, in the SIP group, the NO levels decreased, iNOS release decreased, and the expression of Nrf2 and p62 proteins increased. CONCLUSION: The protective effects of SIP on OP9 cells injured by 5-FU were significant. SIP may play a cytoprotective role by mediating changes in oxidative stress-related proteins. The specific mechanism of action through which SIP mediates these effects remains to be further studied.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fluoruracila/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Baço/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/patologia , Camundongos , Farmacologia em Rede , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Baço/citologia , Baço/patologia
18.
Zhongguo Zhen Jiu ; 41(6): 659-62, 2021 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-34085484

RESUMO

ZHANG Ren, the chief physician, believes that diabetic retinopathy is located at eye and closely related to qi and yin. He proposes the treatment principle of this disease, i.e. combination of the primary and the secondary, in which, taking the eye as the treatment target and focusing on the symptoms. Acupuncture is provided for activating blood circulation and resolving stasis at the extra points, e.g. Xinming and Shangjianming, and also meridian points, e.g. Cuanzhu (BL 2) and Tongziliao (GB 1). The comprehensive application is emphasized with filiform needle, dermal needle and acupoint injection. Moreover, the mental and physical conditions are treated simultaneously to regulate emotions and the preventive idea is suggested on early treatment and persistent treatment.


Assuntos
Terapia por Acupuntura , Acupuntura , Diabetes Mellitus , Retinopatia Diabética , Meridianos , Pontos de Acupuntura , Retinopatia Diabética/terapia , Emoções , Humanos , Masculino
19.
Biomed Res Int ; 2020: 7643248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32071920

RESUMO

Germacrone, a natural 10-membered monocyclic sesquiterpene with three double bonds and a ketone, was isolated from the roots of traditional Chinese medicine Saussurea costus (SC). The pharmacological value and intrinsic mechanism of germacrone in the treatment of esophageal squamous cell carcinoma (ESCC) are still unclear. Therefore, in this study, we further explored the internal molecular mechanism by which germacrone exerts its antiproliferation and antimigration ability against ESCC. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assays showed that germacrone dose-dependently inhibited the proliferation of ESCC cells. Flow cytometry analysis (FACS) and wound healing experiments on germacrone treated ESCC cells showed that germacrone could induce apoptosis and inhibit the migration of ESCC cells in a dose-dependent manner. In the study on the mechanism of action of germacrone in antiesophageal cancer, we found that germacrone increased the ratio of Bax/Bcl-2 in the cytoplasm of ESCC, resulting in the activation of Caspase-9 and Caspase-3 and decreased the expression of Grp78, thereby reducing the inhibition of Caspase-12 and Caspase-7. In addition, we found that germacrone also inhibited STAT3 phosphorylation in a dose-dependent manner. In conclusion, we determined that germacrone exerted an antiesophageal effect through intrinsic apoptotic signaling pathways and by inhibiting STAT3 activity in ESCC cells.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Sesquiterpenos de Germacrano/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Proteínas de Choque Térmico/metabolismo , Humanos , Medicina Tradicional Chinesa , Fosforilação/efeitos dos fármacos , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Saussurea/química , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA